Cooling Tower Measures

Statewide Codes & Standards Program
Prepared for CEC Workshop April 23, 2002

By Mark Hydeman, PE, Taylor Engineering under contract to PG&E/HMG

Scope of Study

■ Three Measures:

- Limitation of air-cooled chillers
- Provision for cooling tower flow turndown
- Limitation on use of centrifugal fans for cooling towers

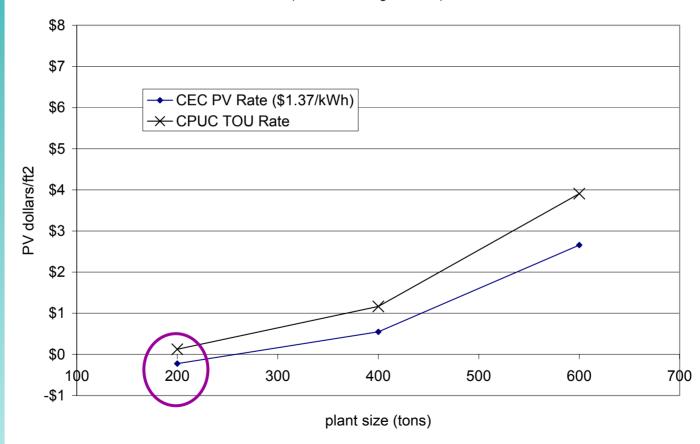
Air-Cooled Limitation: Issues

- Air-cooled systems are less expensive and less efficient than water-cooled systems
- Increased efficiency and cost of watercooled systems may cause unintended market shift towards air-cooled applications

Air-Cooled Limitation: First Costs

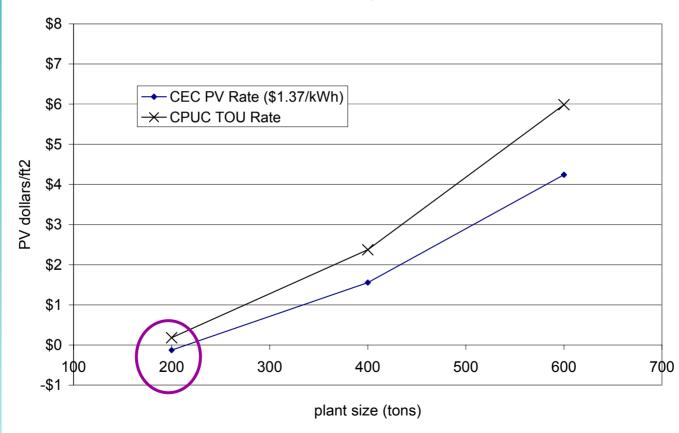
- 3 Climates representing a range of wet-bulb temperatures
- 3 plant sizes 200 tons, 400 tons & 600 tons

Air Cooled Assumptions	200 4	Dlast	400	ton Dlant	cor	O tan Dlant	
	200 tor	Plant	400	ton Plant	600	0 ton Plant	
num chillers		2		2		2	
cost/chiller	\$	37,668	\$	70,313	\$	100,286	data from Trane, Carrier, York
chiller cost	\$	75,336	\$	140,625	\$	200,572	
incremental screen wall length (ft)		30		40		50	estimate
screen wall cost (\$/ft)		5		5		5	estimate
screen cost	\$	150	\$	200	\$	250	
Air cooled first cost	\$	75,486	\$	140,825	\$	200,822	
Incremental Cost (Water Minu	s Air	1					
Incr. First cost - San Francisco	\$	82,236	\$	81,555	\$	159,765	
Incr. First cost - Long Beach	\$	79,411	\$	80,330	\$	152,640	
Incr. First cost - Fresno	\$	78,861	\$	79,055	\$	152,640	
Avg	\$	80,169	\$	80,313	\$	155,015	
Incr. Annual Cost	see Annual Cost above					<u> </u>	

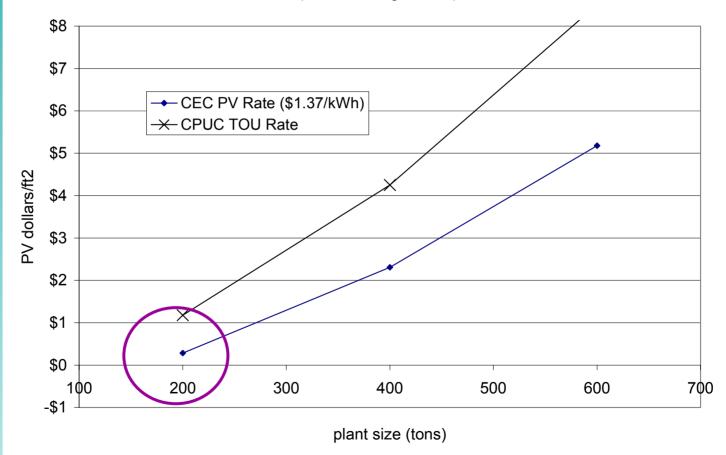

Air-Cooled Limitation:Modeling Assumptions

Water Cooled Modeling Ass	umptions						
chiller type and T-24 min efficiencies	200t = (2) 100t screw (4.45 COP = 0.2247 EIR, 4.50 IPLV)						
,	400t = (2) 200t screw (4.90 COP = 0.204 EIR, 4.95 IPLV)						
	600t = (2) 300t centrif (6.10 COP = 0.1639 EIR, 6.10 IPLV)						
chiller curves	DOE-2 defaults for W.C. screw, centrif						
CW pump selection	GPMs from the CoolTools optimization, Head from EA and other designs						
		DOE-2 does not do a good job modeling start/stop					
chiller min unloading	0%	losses					
chiller HGB	15%	ACM min unload default is 10% centrif, Screw 15%					
chiller staging	max out 1st before bringing on s	max out 1st before bringing on second					
Tower efficiency (EIR)	0.01	based on manufacturer's cost/performance data					
CW approach	7 degree F	common practice					
CW delta T	18	based on CoolTools optimization					
CWST setpoint	fixed at design wb						
Air Cooled Modeling Assum	ptions						
chiller type	200t = (2) 100t screw						
	400t = (2) 200t screw						
	600t = (2) 300t screw						
chiller efficiency	T-24 min = 2.8 COP (0.357 EIR), 2.8 IPLV					
chiller compressor vs fan power split	93% compressor, 7% fan	Carrier catalog					
compressor EIR	0.3333						
fan EIR	0.0245						
chiller curves	DOE-2 defaults						
Min Air temp	70	default					
	Below this, control action is initiated to maintain this min temp.						
	·	DOE-2 does not do a good job modeling start/stop					
chiller min unloading	0%	losses					

Air-Cooled Limitation: Results (SF 84Tdb/65Twb)

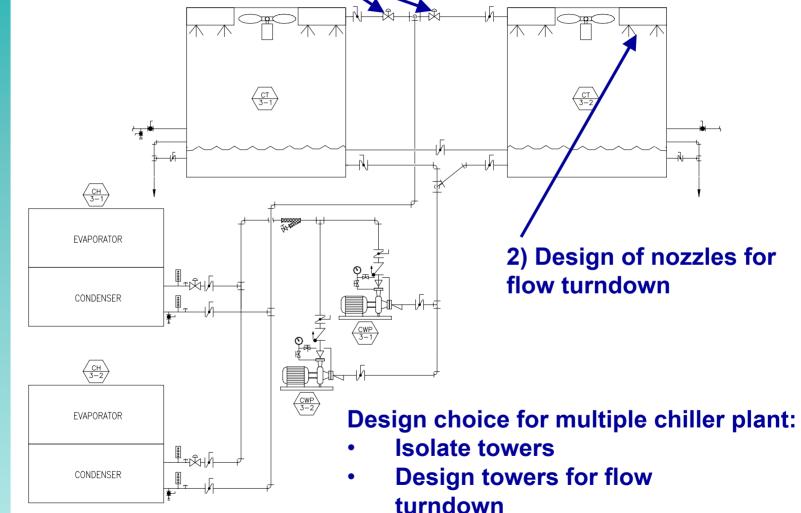

Lifecycle Cost of Water Cooled versus Air Cooled in San Francisco (LCC = Savings - Cost)

Air-Cooled Limitation: Results (Long Beach 97Tdb/70Twb)


Lifecycle Cost of Water Cooled versus Air Cooled in Long Beach (LCC = Savings - Cost)

Air-Cooled Limitation: Results (Fresno 104Tdb/73Twb)

Lifecycle Cost of Water Cooled versus Air Cooled in Fresno (LCC = Savings - Cost)



Air-Cooled Limitation: Proposed New Prescriptive Requirement

- Chilled water plants shall employ water-cooled chillers.
- Exceptions:
 - Air-cooled chillers may be installed up to a maximum total installed capacity of 300t
 - Where it can be demonstrated to the authority having jurisdiction that the water quality prohibits the use of water-cooled equipment.

Cooling Tower Flow Turndown:

Issue 1) Isolation valves

Cooling Tower Flow Turndown: Analysis

- Turndown saves energy AND reduces first cost
- The tower can more efficiently reject heat with more cells operating (near cube law fan energy savings)
- 3:1 turndown cost ≤\$500/cell
- Isolation control actuator costs ~\$2,000/cell

Cooling Tower Flow Turndown:Proposed New Prescriptive Requirement

Heat rejection units configured with multiple condenser water pumps shall be designed so that all cells can be run in parallel with the larger of the flow that's produced by the smallest pump or 33% the design flow.

Centrifugal Fan Limitation: Issues

- Low profile applications, centrifugal blow-through towers can be built lower than draw-through towers with propeller fans.
- Applications with high static pressure like towers that are sited in a well and require ducted inlet or outlet air. This is a legitimate issue.
- Noise sensitive applications. Propeller fan towers can handle the static of sound attenuation if required.

Centrifugal Fan Limitation: Analysis

- Centrifugal fan towers use ~ 2X the energy of propeller fan towers
- In large tower sizes (<300t) without sound attenuation on a centrifugal tower, propeller towers with attenuation cost less and are quieter.
- For larger tower sizes propeller towers are also available in a reduced height configuration

Centrifugal Fan Limitation: Proposed New Prescriptive Requirement

Heat rejection units serving cooling loads 300t and greater shall use propeller fans in lieu of centrifugal blowers.

Exceptions:

- If heat rejection units is located indoors and requires external static pressure capability
- If an acoustical engineer certifies that acceptable noise levels cannot be achieved with a propeller fan tower.
- If the heat rejection units meets the energy efficiency requirement for propeller fan towers in Section 112, Table 1-C7.

Questions

